$$
\begin{aligned}
\therefore & F_{K_{+}}=(-A)^{\cdots-}\left\langle K_{+}\right\rangle \Rightarrow(-A)^{-3 \omega_{0}}\left\langle K_{+}\right\rangle=(-A)^{-} F_{K_{+}} \\
& F_{K_{-}}=(-A)^{-3 \omega_{0}+3}\left\langle K_{-}\right\rangle \Rightarrow(-A)^{-3 \omega_{0}}\left\langle K_{-}\right\rangle=(-A)^{-3} F_{K_{-}} \\
& F_{K_{0}}=(-A)^{-3 \omega_{0}}\left\langle K_{0}\right\rangle
\end{aligned}
$$

and we have

$$
A^{4} F_{K_{+}}-A^{-4} F_{k_{-}}-\left(A^{-2}-A^{2}\right) F_{k_{0}}=0
$$

note: if we set $V_{K}(t)=F_{L}\left(t^{-1 / 4}\right)$ then we see V_{K} satisfies
A) V_{k} an invariant of isotopy class of K
B) $t^{-1} V_{k_{+}}-t V_{k_{-}}-\left(t^{1 / 2}-t^{-1 / 2}\right) V_{k_{0}}=0$
C) $V_{\text {unknot }}=1$
ne. V_{K} is the Jones polynomial! and now we know it is well-deficied!
E. Alternating Links
a knot diagram D is called alternating if over and under crossings alternate as you traverse the knot
(l) alternating

a link is alternating if it has an alternating diagram an alternating decigram is called reduced if there is no embedded circle in \mathbb{R}^{2} intersecting the diograme transversely one time at a crossing

exercise: Show if D is an alternating diagram and it is not reduced then a sequence of "flips" as above will give a diagram that is reduced and alternating (with fewer crossings)
$\operatorname{In} \frac{1890}{\left.\text { (and a } 3^{(d)}\right)}$ Tart conjectured the follownig two results
Th ${ }^{m} 5$:
I) If L has a reduced alternating diagram D then for any other diagram D^{\prime} for L
\# crossings of $D^{\prime} \geq$ \# crossings of D
in particular L knotted! (unless D has no crossings)
II) If D and D^{\prime} are reduced alternativig diägrams for an oriented link L then $\omega(D)=\omega\left(D^{\prime}\right)$

These are Amazing! with no more work we know

are different by I)
and
 are different by II leven upton mir roo ing!

Remark:

1) II not true in general

each has 10 crossings ("10," and " 10_{162} ")
but knots isotopic! (try to show this)
these knots we thought for decatedes to be different then Perko in 1970 showed they were the same! called the Perko Pair
2) above theorem was proven in 1980's after the discovery of the Jones polynomial Proven by Kauffman, Murasugi, and Thistlethwaite (independently!)
We with prove I, but II is some what similar (though need better polynomial, see lecture suppliment)
Recall for a state s of a diagram D

$$
A_{\downarrow} \underbrace{1 / \underbrace{}_{B}}
$$

$\alpha(s)=$ number of A-smoothing of s
$\beta(s)=$ number of B-smoothing of s
$|s|=$ number of components of s
and $\langle D\rangle=\sum_{\substack{\text { all states } \\ s \text { of } D}} A^{\alpha(s)-\beta(s)}\left(-A^{-2}-A^{2}\right)^{|s|-1}$
let s_{A} be the state with all A-smoothings and s_{B} similar for B call a diagram D, A-adequate if

$$
\left|s_{A}\right|>|s| \quad \text { ie. switch one } \quad \begin{gathered}
\text { crossing to a } B
\end{gathered}
$$

for all states s with $\alpha(S)=\alpha\left(S_{A}\right)-1$
similarly define B-adequate
call D adequate it it is both A and B adequate
lemma 6:
A reduced alternating diagram is adequate

Proof: Given a diagram you can consider the "checker board"
collaring of the plane
egg.

exercise: If D is alternating then S_{A} is the boundary of one of these surfaces and S_{B} the other
Hint: Consider

so we have the black surface

(III)
and the orange
all B splitting

now let s be any state with one less B-splitting than S_{B} so the only difference is at one place where

If the strands α and β are on different circles
then $|s|<\left|s_{B}\right|$

If α and β are on same circle then

$$
|s|>\left|s_{B}\right|
$$

ins
so we need to see second case cant happen recall circles in s_{B} bound disks (orange or black) disjoint from D so if case 2 happens we see

so we can find an embedded s' showing D not reduced Φ
given a Laurent polynomial $f(t)$ denote
$\max f=$ maximal degree of t in f
$\min f=\operatorname{minimal~"~"~"~}$
lemma 7:
let D be a connected diagram with n crossings
I) $\max \langle D\rangle \leq n+2\left|S_{A}\right|-2 \quad w+t h=$ if D is A adequate
$\min \langle D\rangle \geq-n-2\left|S_{B}\right|+2 \quad$ " B adequate
II) $\left|S_{A}\right|+\left|S_{B}\right| \leq n+2$ " "is alternating
we prove this later, but now
Th ${ }^{m} 8$:
let D be a connected, n-crossing diagram of a link L and $V_{L}(t)$ its Jones polynomial
Then $\max V_{L}-\min V_{L} \leq n$ with equality if D

Clearly Tart I follows!
Proof: recall substituting $t=A^{-4}$ into $(-1)^{-3 \omega(D)}\langle D\rangle$ gives $V_{L}(t)$

$$
\text { so } \begin{aligned}
4 B_{r} V_{L}=\operatorname{Br}\langle D\rangle & =\max \langle D\rangle-\min \langle D\rangle \\
& \leq n+2\left|S_{A}\right|-2-\left(-n-2\left|S_{B}\right|+2\right) \\
& =2 n+2\left(\left|S_{A}\right|+\left|S_{B}\right|\right)-4 \\
& \leq 2 n+2(n+2)-4=4 n
\end{aligned}
$$

if D is alternating and reduced, then it is adequat, so (emma 7. I) says $1^{\text {st }} \leq i s=$
lemma $7, I I)$ says 2 ind \leq is $=$ so done!
Proof of lemma 7:
I) for a state s set $\langle s\rangle=A^{\alpha(s)-\beta(s)}\left(-A^{2}-A^{-2}\right)^{(s \mid-1}$
so $\langle D\rangle=\sum_{s}\langle s\rangle$
now $\alpha\left(S_{A}\right)=n$ and $\beta\left(S_{A}\right)=0$

$$
\int_{1-2}^{\text {largest term }} A^{\alpha-\beta}\left(-A^{2}\right)^{|s|-1}
$$

so $\max \left\langle s_{A}\right\rangle=n+2\left|s_{A}\right|-2$
suppose s 'has one less A smoothing than s
then $\alpha\left(s^{\prime}\right)-\beta\left(s^{\prime}\right)=\alpha(s)-\beta(s)-2$
and $\quad\left|s^{\prime}\right|=|s| \pm 1$ (depending if circles merged or split)
so $\max \left\langle s^{\prime}\right\rangle=\max \langle s\rangle-2 \pm 2=\left\{\begin{array}{l}\operatorname{mox}\langle s\rangle \\ \operatorname{ar}\langle s\rangle-4 \\ \max \langle s\rangle\end{array}\right.$ given any state S you get it from S_{A} by switching some A smoothing to B smoothing
we can do this one-by-one to get states

$$
s_{0}=s_{A}, S_{1}, \ldots s_{k}=s
$$

where each $s_{1} \rightarrow s_{1+1}$ swithes one A to a B from above we see $\max \left\langle s_{A}\right\rangle \geq$ max $\left\langle s_{1}\right\rangle \geq \ldots \geq \max \left\langle s_{k}\right\rangle=\max \langle s\rangle$ so all terms in $\langle D\rangle$ have degree $\leq \max \left\langle S_{A}\right\rangle=n+2\left|S_{A}\right|$. note: since $\max \left\{S_{A}\right\rangle=n+2\left|s_{A}\right|-2$ then $\max \langle D\rangle$ will also be $n+2\left|s_{A}\right|-2$ unless the term in $\left\langle s_{A}\right\rangle$ is cancelled by a term of same degree in $\langle s\rangle$ for some s if D A-adequate then for any state s differing from S_{A} by changing one A to a B we have

$$
|s|<\left|s_{A}\right|
$$

so from above $\max \langle s\rangle\left\langle\max \left\langle s_{A}\right\rangle\right.$
\therefore from above any state different from S_{A} satisfies this so the $n+2\left|S_{A}\right|-2$ term in $\left\langle S_{A}\right\rangle$ cant be cancelled in $\langle D\rangle$ and $\operatorname{mox}\langle D\rangle=n+2\left|S_{A}\right|-2$

The statement for $\min \langle D\rangle$ and B-adequate diagrams is similar (or same if you consider $m(D)$),
II) We prove $\left|S_{A}\right|+\left|S_{B}\right| \leq n+2$ by induction on n

Base case: $n=0$ then we have
O^{D}
only one state so $S_{A}=S_{B}=D$
and $\left|S_{A}\right|+\left|S_{B}\right|=2=0+2$
Inductively assume true for diagram with $n-1$ crossings let D be a diagram with n crossings fix one crossing c and notice that for at least one choice of smoothing resulting diagram D_{\uparrow}^{\prime} is connected suppose this was an A-smoothing think about (other case similar) this if you don't see it then S_{A} for D and S_{A} for D^{\prime} right away we call this $S_{A}{ }^{\prime}$ for clarity are the same: $S_{A}=S_{A}^{\prime}$ as discussed above $\left|s_{B}\right|=\left|s_{B}^{\prime}\right| \pm 1$ inductive hypothesis thus $\left|S_{A}\right|+\left|S_{B}\right|=\left|S_{A}^{\prime}\right|+\left|S_{B}^{\prime}\right| \pm 1 \leq(n-1)+2 \pm 1 \leq n+2$ so done
we are left to see $\left|S_{A}\right|+\left|S_{B}\right|=n+2$ if D alternating we delay this untill later (need Euler characteristic)
F. Lecture Supplement: Other polynomials
so what is the most general polynomial invariant you can define using the skein relation above?
it is not too hand to show there is a unique function
$\{$ oriented links $\} \longrightarrow \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1}\right]$

L Laurent polys
satisfying A) $P_{\text {unknot }}=1$
B) if K_{+}, K_{-}, and K_{0} have diagrams related by

then

$$
x P_{k_{+}}+y P_{k_{-}}+z P_{k_{0}}=0
$$

Substituting x, y, z for any polynomials in any variables gives a polynomial satisfying a skein relation, and any such polynomia comes from this. So P_{k} is "the most general" shein polynomia
eg.

$$
\begin{aligned}
& \Delta_{K}(t)=P_{k}\left(1,-1, t^{-1 / 2}-t^{1 / 2}\right) \\
& V_{k}(t)=P_{k}\left(t^{-1},-t, t^{-1 / 2}-t^{1 / 2}\right)
\end{aligned}
$$

exercise:
show P_{k} is a homogeneous polynomial
Given this we can turn P_{k} into a non-homogeneous polynomial in 2 variables (just set one of the variables equal to a function of the others)
the most common way this is done is by setting

$$
\begin{aligned}
& x=\alpha^{-1}, y=-\alpha, z=-z \\
& x=l, y=e^{-1}, z=m
\end{aligned}
$$

or

Any of these 2 variable polynomials is called the HOMFLY Cor HOMFLY-PT or FLYPMOTH or the Generalized Jones) polynomial
it was discovered in the late 1980 s by 2 groups
Hoste, Ocneanu, Millett, Freyd, Lickerish, and Yetter Prztycki and Traczyk
There is also a generalization of the Jones polynomial as follows
Fact: There exist a unique function

$$
[\cdot]:\left\{\begin{array}{c}
\text { unorizated } \\
\text { link diagrams }
\end{array}\right\} \longrightarrow \mathbb{Z}\left[\mathbb{z}^{ \pm}, a^{ \pm}\right]
$$

such that (1) if $D_{+}, D_{-}, D_{0}, D_{\infty}$ are related by

then

$$
\left[D_{+}\right]+\left[D_{-}\right]=z\left(\left[D_{0}\right]+\left[D_{\infty}\right]\right)
$$

(3) $[$ unknot $]=1$
(4) if D and D^{\prime} are related by Reidemeister type 2 or 3 moves then $[D]=\left[D^{\prime}\right]$
now just as we did to get a link invariant out of the Kauffman bracket we define
$K_{L}(a, z)=a^{-\omega(D)}[D]$ where D is a diagram for L and recall ω is the writhe K_{L} is called the Kauffman polynomial of L (note this is an invarcanit of oriented links! because of $\omega(D)$)
recall the Kauffman bracket satisfies

$$
\langle Y\rangle=A\langle)(\rangle+A^{-1}\langle\asymp\rangle
$$

so $\langle X\rangle+\left\langle\lambda^{\prime}\right\rangle=\left(A+A^{-1}\right)(\langle)(\rangle+\langle\cong\rangle)$
and

$$
\left.\left.\langle\grave{p}\rangle=-A^{3}\langle)\right\rangle \text { and }\langle,\rangle\right\rangle=-A^{3}\langle 1\rangle
$$

$$
\therefore \quad F_{L}(A)=K_{L}\left(A+A^{-1},-A^{3}\right)
$$

and hence $V_{L}(t)=K_{L}\left(t^{1 / 4}+t^{-1 / 4},-t^{3 / 4}\right)$
exercises:

1) $K_{\bar{L}}=K_{L}$ if $\bar{L}_{\text {is }} L$ with orientation reversed
2) $K_{m(L)}(z, a)=K_{L}\left(z, a^{-1}\right)$
3) $K_{O_{k}}=\left(\left(a+a^{-1}\right) z^{-1}-1\right)^{k-1}$ where O_{k} i k component uni. $\underbrace{00 \ldots 0}_{k}$
4) $K_{L_{1} u L_{2}}=\left(\left(a+a^{-1}\right) z^{-1}-1\right) K_{L_{1}} \cdot K_{L_{2}}$
where $L_{1} U L_{2}$ is just union L_{1} and L_{2} where they are separated by an \mathbb{R}^{2}
5) $K_{c_{1} \# c_{2}}=K_{c_{1}} \cdot K_{c_{2}}$ where $L_{1} \# L_{2} C^{\text {called a }}$ connect connect sum of L_{1} and L_{2}
We have now seen all the "mainstream" polynomials (there is also the A-polynomial, but quite different) let's end with seeing how to prove $\mathrm{Th}^{m} 5$. II) using K recall T^{-m} 5. II) says

If D and D^{\prime} are reduced alternativig diagrams for an oriented link L then $\omega(D)=\omega\left(D^{\prime}\right)$
K_{L} is a polynomial in z and a
we can write it as $[0]=\sum p_{1}(a) z^{i}$ where $p_{1}(a) \in \mathbb{Z}\left[a^{ \pm 1}\right]$ given a diagram D we say its bridge length, $b(D)$, is the maximin number of consecutive ovencrossnigs in D

note, if \# crossings of $D>0$, then $b(D)>0$
lemma 9:
let D be a link diagram with n crossings and bridge length b.
Then
max degree in z of $K_{D} \leq n-b$
note:

1) lemma is equivalent to $p_{t}(a)=0, \forall i>n-b$
2) if D is alternating, then $b(D)=1$ so $n(D)-b(D)=n-$
lemma 10:
let D be a connected alternating decigram with $n \geq 2$ crossings
Then
(1) $P_{n-1}(a)=r\left(a-a^{-1}\right) \quad r \in \mathbb{E}, r \geq 0$
(2) if D is prime and reduced, then $r>0$
here D prime means if \exists a circle in \mathbb{R}^{2} intersecting D in 2 places (and transversely), then on one side of the circle D is just an arc (ne. no crossings)

S^{\prime} intersecting
2 times
D prime \Rightarrow or

$$
D_{2}=D
$$

(ne prime means not a non-trivial connect sum)
given any D we can write it as $D=D_{1} \# \ldots \# D_{l}$ where D_{1} are pro
exercisé: if D is connected and prime, then D reduced or has only one crossing (∞, ∞, \ldots)
Proof of T^{n} 5. II):
let D and D^{\prime} be connected, reduced, alternating diagrams for same link

$$
\begin{aligned}
& a^{\omega(D)}[D]=K_{D}=K_{D^{\prime}}=a^{\omega\left(D^{\prime}\right)}\left[D^{\prime}\right] \\
& \text { so }\left[D^{\prime}\right]=a^{\omega(D)-\omega\left(D^{\prime}\right)}\left[D^{\prime}\right]
\end{aligned}
$$

we can write $D=D_{1}+\ldots D_{l}$ with D_{l} prime and $D^{\prime}=D_{1}^{\prime} \# \ldots D_{l^{\prime}}^{\prime}$ with D_{i}^{\prime} prime
compair the coefficient of the higest power of z :

$$
\pi r_{2}^{\prime}\left(a+a^{-1}\right)^{m_{i}^{\prime \prime}}=a^{\omega(D)-a(D)^{\prime}} \pi r_{1}\left(a+a^{-1}\right)^{m_{i}}
$$

the r_{1} and $r_{1}^{\prime} \neq 0$ by lemma 7
(here we use that higest porer of $K_{D_{2}}$ is $r_{2}\left(a+a^{-1}\right)$ with $r_{1} \neq 0$ from lemma 7 and exercise above: $K_{L_{1} \# L_{2}}=K_{L_{1}} \cdot K_{L_{2}}$)
note left hand side symmetric in $a_{1} a^{-1}$ but right hand side wont be of $\omega(D) \neq \omega\left(D^{\prime}\right)$

$$
\therefore \omega(D)=\omega\left(D^{\prime}\right)
$$

Proof of lemma 10 given lemma 9:
we induct on n
Base case $n=2$: 2 possibilities (u pto mirroring)
if $k=\delta \quad F_{K}=1 \quad p_{2-1}(a)=p_{1}(a)=O\left(a+a^{-1}\right)$
if $k=$ (1) then check $[k]=\left(a+a^{-1}\right) z+1-\left(a+a^{-1}\right) z^{-1}$ so $p_{2-1}(a)=p_{1}(a)=1\left(a+a^{-1}\right)$
so (1) and (2) true for $n=2$
inductive step for (1):
if D not reduced let D ' be diagram with one of the reducing crossings removed

$$
\text { egg. } D=D_{1}=D_{2} \Rightarrow D^{\prime}=D_{1} \Longrightarrow D^{3}
$$

now D, D^{\prime} diagrams for same link so

$$
a^{\omega(D)}[D]=F_{D}=F_{D^{\prime}}=a^{\omega\left(D^{\prime}\right)}\left[D^{\prime}\right]
$$

you can check $\omega(D)=\omega\left(D^{\prime}\right) \pm 1$ so

$$
[D]=a^{ \pm}\left[D^{\prime}\right]
$$

but D^{\prime} has $n-1$ crossings so $P_{n-1}(a)=0 \quad \checkmark$
if D is reduced then let $D_{+}=D_{1}$ and $D_{-1}, D_{0}, D_{\infty}$ the corresponding diagrams
D reduced $\Rightarrow D_{0}, D_{\infty}$ are connected diagrams note: D_{-}has bridge length 3

$$
D_{+}+>c_{c}^{1} \rightarrow D_{-}
$$

so by lemma 6, $p_{n-1}^{-}(a)=0$ (here $p_{i}^{-}(a)$ is from coeff of [$\left.0_{-}\right]$and similarly p_{1}^{0} and p_{2}^{0}
we have $[D]=z\left(\left[D_{0}\right]+\left[D_{\infty}\right]\right)-\left[D_{-}\right]$

$$
\begin{aligned}
\therefore \quad p_{n-1}(a) & =p_{n-2}^{0}(a)+p_{n-2}^{\infty}(a) \\
& =\left(r^{0}+r^{\infty}\right)\left(a+a^{-1}\right) \quad \text { and } r^{0}+r^{\infty} \geq 0
\end{aligned}
$$

 and are alternating
inductive step for (2):
exercise: Show D prime $\Rightarrow D_{0}$ or D_{∞} prime land therefore reduced by exercise above)
\therefore from above $p_{n-1}(a)=\left(r^{0}+r^{\infty}\right)\left(a+a^{-1}\right)$ and by induction one of r^{0} or $r^{\infty}>0$

Proof of lemma 9:
proof is by induction on $(n, n-b)$ (here $(a, b)<(c, d)$
$\Leftrightarrow a<c$ or $(a=c$ and $b<d)$
base case $n-b=0$:
exercise: In this case D is a diagram for O_{k}
Hint: show you can traverse one component
 of D st the first time you hit each crossing its an undercrossing and all other components trivial unknots

$$
\therefore[D]=a^{\omega(D)} K_{O_{k}}=a^{\omega(D)}\left(\left(a+a^{-1}\right) z^{-1}-1\right)^{k-1}
$$

so no positive powers of z ie. $p_{2}(a)=0 \quad \forall \quad 2>0=n-b$.
inductive step $n-b>0$:
consider a crossing c at one end of a bridge of D of length b
so that bridge
does not pass through C

let $D_{+}=D$ (focus on C) and D_{1}, D_{0}, D_{∞} the related diagrams
note: D. has bridge length $\geq b+1$ and D_{0}, D_{∞} have $\leq n-1$ crossings and bridge length ≥ 6
by induction $p_{i}=p_{i}^{0}=p_{i}^{a}=0$ if $\quad \imath>n-b-1$ now $[D]=z\left(\left[D_{0}\right]+\left[D_{\infty}\right]\right)-\left[D_{-}\right]$

$$
\therefore p_{2}=0 \text { if } 1 \geq b-n
$$

so we are done unless there is no such C
this happens when the brige is one component of D

or when bridge contains c again

in the first case D is equivdent to D^{\prime} (via Reidemerster II) and III) moves) where D^{\prime} has less crossings $\therefore[D]=\left[D^{\prime}\right]$ and done by induction in the second case can get D^{\prime} by ellinisiating loop and $[D]=a^{ \pm}\left[D^{\prime}\right]$ and D^{\prime} has $<n$ crossings so done by induction

Remark: For the record Tait had 3 main conjectures. The 2 above in Th ${ }^{m} 5$ and the following one:
a flype is the following operation on link diagrams
 switched

Tact conjecture III:
If D_{1} and D_{2} reduced alternating diagrams of L Then D_{1} and D_{2} are related by flypes
note: 1) Tait III $\Rightarrow \operatorname{Tart}^{2}$ II
2) Tait III proved by Menasco-Thistlethwaite 1991

